2(x^2+2x+4)-(x-2)(x-3)=2(4x+5)

Simple and best practice solution for 2(x^2+2x+4)-(x-2)(x-3)=2(4x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x^2+2x+4)-(x-2)(x-3)=2(4x+5) equation:



2(x^2+2x+4)-(x-2)(x-3)=2(4x+5)
We move all terms to the left:
2(x^2+2x+4)-(x-2)(x-3)-(2(4x+5))=0
We multiply parentheses
2x^2+4x-(x-2)(x-3)-(2(4x+5))+8=0
We multiply parentheses ..
2x^2-(+x^2-3x-2x+6)+4x-(2(4x+5))+8=0
We calculate terms in parentheses: -(2(4x+5)), so:
2(4x+5)
We multiply parentheses
8x+10
Back to the equation:
-(8x+10)
We get rid of parentheses
2x^2-x^2+3x+2x+4x-8x-6-10+8=0
We add all the numbers together, and all the variables
x^2+x-8=0
a = 1; b = 1; c = -8;
Δ = b2-4ac
Δ = 12-4·1·(-8)
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{33}}{2*1}=\frac{-1-\sqrt{33}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{33}}{2*1}=\frac{-1+\sqrt{33}}{2} $

See similar equations:

| 15x+12(11-x)=141 | | 15x+12(11x)=141 | | (3x-1)(x-3)-(x+4)(x-2)=3(x+4) | | n^2+n-4=20 | | (x+5)(x+2)-2(2x-3)=3x+2 | | x=0.07*0.11*0.11 | | (x+2)(x-8)+16=0 | | x=0.07x0.11x0.11 | | x/4x=7 | | -2x2=12 | | (3x+2)(x+2)=35 | | y+5=2y+7 | | -20=4/6x | | 3(8x-1)=45 | | 6(x+1)=x(1-x) | | 9y+8=4y | | 3z+8=3+2 | | 3(3x-5)=25 | | 2x2-18x+40=0 | | x2+4x−1=0 | | 3^2x-1=81 | | 8k-72=56 | | 8k-72=12 | | 8k-72=1 | | -20=46x | | 3(2x-5)+4(7-2x)=2x-3(2x-8) | | 6(x+2)+4(3–x)=30 | | 7p-6=71 | | (3x+1/x+4)-(x-2/x-3)=0 | | 4x+13-(2x)=19 | | 4.7m=-3m+4 | | x²+6x-27=0 |

Equations solver categories